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Transport Properties of Random Media: A New Effective Medium Theory
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We present a new method for efficient, accurate calculations of transport properties of random media.
It is based on the principle that the wave energy density should be uniform when averaged over length
scales larger than the size of the scatterers. This scheme captures the effects of resonant scattering of
the individual scatterer exactly, as well as the multiple scattering in a mean-field sense. It has been
successfully applied to both “scalar” and “vector” classical wave calculations. Results for the energy
transport velocity are in agreement with experiment. This approach is of general use and can be easily
extended to treat different types of wave propagation in random media.

PACS numbers: 42.25.Bs, 05.60.+w, 41.20.Jb, 78.20.Dj
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In recent years, there has been a growing interest
studies of the propagation of classical waves in rando
media [1]. While some of the features associated wi
weak localization, such as enhanced coherent backsc
tering, have been detected in light scattering experime
[1], the localization of classical waves in random sys
tems has not been established beyond doubt. Rec
experimental results [2] for the diffusion coefficientD
and the transport mean free path,t demonstrated that in
a disordered medium, low values of the diffusion con
stant D ­ yE,ty3 were caused by extremely small val
ues of the energy transport velocityyE and not by the
small values of,t, which signifies strong localization.
To explain this low value of the transport velocity, a
theory was developed by van Albadaet al. [2], in the
low-concentration limit, of the Bethe-Salpeter equation
They argued that their approach gives the correct tran
port velocity observed experimentally, which is the en
ergy transport velocityyE and not the phase velocity
yp . yp is approximately equal to the velocity of light
c divided by an appropriate index of refraction.yE is
always less thanyp , especially close to the Mie reso-
nances. The renormalization of the diffusion coefficien
near resonances in random media has been extensiv
studied [3–8] after its introduction by the pioneer wor
of van Albadaet al. [2]. It is by now well understood
that to lowest order in densityof the dielectric scatterers,
the strong decrease in the transport velocity is due to t
Mie resonances. Near resonances, a lot of energy is te
porarily stored inside the dielectric scatterer or equiv
lently the wave spends a lot of time (dwell time) insid
the dielectric scatterer.

Experimental results [9] for alumina spheres hav
shown that as the volume fraction of the scatterersf
increases towards close packingsf . 0.60d, there is no
structure in the diffusion coefficient versus frequenc
This clearly suggests that there is no structure in th
transport velocity. It is, therefore, inappropriate to ca
culate the transport velocity using theyE of van Albada
et al. [2] in this high-f regime since their theory foryE
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is a low-concentration theory. But, if we, nevertheless,
calculate [10,11]yE according to Ref. [2] for this high
f ­ 0.60, strong structure inyE is obtained in disagree-
ment with the experimental results. An extension of the
well-known coherent-potential approximation (CPA) was
recently developed [10] and obtained a CPA phase ve-
locity for f ­ 0.60, which is qualitatively consistent with
experiment, in not showing any structure as a function of
the frequency. The newly developed [10] coated CPA for
low f gives a CPA phase velocity which is higher than
the velocity of light near Mie resonances. This is an un-
desirable feature of the CPA that had to be fixed. Thus,
for small f, the theory of van Albadaet al. [2] seems to
give the correct transport velocityyE, while for largef,
it is the coated CPA approach [10–12] that seems to give
transport velocities consistent with experiment [9].

In the present Letter, we present a new approach
in calculating the transport properties of random media
that takes into account the multiscattering interactions
in a mean-field sense. The main new physical idea is
that in a random mediumthe energy density should be
uniform when averaged over the correlation length of the
microstructure. This approach has been applied toboth
scalar and vector classical wave propagation in random
media with many successes. For both the scalar and
vector cases, we obtain results for the energy transport
velocity that gives pronounced dips inyE for low f, while
asf increases the dips are smeared out, as expected and in
agreement with experiment. In addition, this new energy-
density CPA gives the correct long-wavelength limit for
the effective dielectric constant for both the scalar and
vector cases. The energy density for the vector case is
calculated exactly, where both the electric and magnetic
field contributions are taken into account. For the vector
case, analytical as well as numerical results of this
approach give that the long-wavelength dielectric constant
is given by the Maxwell-Garnett formula. The formalism
that has been developed in this Letter can be easily
extended to treat different types of wave propagation in
disordered systems and is therefore of general use.
© 1995 The American Physical Society
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We consider a composite medium of two lossle
materials, with dielectric constantse1 and e2. Our
composite medium is assumed to consist of spheres w
diameter d ­ 2R and dielectric constante1 randomly
placed within the host material with dielectric consta
e2 ­ 1. The random medium is characterized also b
f, the volume fraction occupied by the spheres. W
consider first the propagation of classical waves [13]
a random medium described by the wave equation
the scalar fieldC, f=2 1 v2esrdyc2gC ­ 0, whereesrd
is a random variable. By correctly handling the War
identities, van Albadaet al. [2,7,8] reported that in the
low density limit,D ­ yE,ty3, whereyE is given by

yE ­
c2

yps1 1 dd
. (1)

The quantityd is given by

d ­ n
Z

d3rjC1
k srdj2fesrd 2 1g , (2)

with n the number density of the scatterers, andC
1
k srd is

the one-scatterer eigenfunction with incident wave vec
k for a single dielectric scatterer. Physically,d can be
larger when the incident wave frequency coincides w
an internal resonance of the scatterer. When that happ
jC

1
k srdj2 has a large magnitude inside the scatter

leading to a larged, and therefore, to small values ofyE.
A more convenient representation for numerical purpos
of d for scalar waves was given by van Tiggelen [14
where yE was written with respect to the Van de Huls
scattering coefficients of the scalar dielectric sphere [s
Eq. (3.87) of Ref. [14]]. The Amsterdam group [2,7,8,14
extended their scalar results for the renormalization
yE to the vector case by simply replacing the scal
single-scatterert matrix with the vectort matrix. This
is an oversimplified approximation of the real vecto
problem. The polarization of the EM waves has to b
taken into account on a fully vector calculation in derivin
the Boltzmann equation, starting from the Bethe-Salpe
equation. This is still the outstanding problem of th
field. If indeed one makes this approximation, ayE is
obtained [see Eqs. (28) and (29) of Ref. [2]] that is mu
lower thanyp and it has pronounced dips close to th
Mie resonances of the isolated dielectric scatterer.
addition, the long-wavelength limit ofyE and therefore
of the dielectric constante is given bye ­ 1 1 3fse1 2

e2dyse1 1 2e2d and not by the Maxwell-Garnett theory
result, which is the “correct” result for the vector case.

Here, we present a new approach for calculating t
transport properties. Consider, for example, a rando
medium composed of a dispersion of spheres as sho
in Fig. 1. The basic structural unit may be regarde
as a coated sphere, as represented by the dashed
in Fig. 1(a). The radius of the coated sphereRc ­
Ryf1y3, whereR is the radius of the solid sphere. Le
ke ­

p
e vyc characterize the effective medium, whic

has an average dielectric constante to be determined
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self-consistently. The self-consistent condition for the
determination ofke or e is that the energy content of
the coated sphere embedded in the effective medium [see
Fig. 1(b)] is equal to the energy content of a sphere of
radiusRc with e dielectric constant [see Fig. 1(c)] i.e.,Z Rc

0
d3rr

s1d
E s$rd ­

Z Rc

0
d3rr

s2d
E s$rd , (3)

which is also shown schematically in Fig. 1.r
s1d
E srd and

r
s2d
E srd are the energy densities for the configurations

shown in Figs. 1(a) and 1(b), respectively. For scalar
waves the energy density is

rEs$rd ­
1
2

fv2es$rd jCs$rdj2yc2 1 j $=Cs$rdj2g , (4a)

whereas the energy density of the vector waves is given
by

rEs$rd ­
1
2

fes$rd j $Es$rdj2 1 mj $Hs$rdj2g , (4b)

wherem is the magnetic permeability which is taken equal
to 1 andCsrd and $Esrd and $Hsrd are the scattering wave
function and the scattered electric and magnetic fields for
a plane wave incident on a coated sphere, respectively. In
Eq. (3),e is the parameter to be determined. It should be
noted that the energy density, and, therefore,Csrd being
a scattering wave function, implicitly depends one. We,
therefore, have Eq. (3) as the self-consistent condition for
our energy-density CPA. We find that this condition is

FIG. 1. (a) In a random medium composed of dielectric
spheres, the basic scattering unit may be regarded as a coate
sphere, as represented by the dashed lines. To calculate th
effective dielectric constante, a coated sphere of radiusRc ­
Ryf1y3 is embedded in a uniform medium. The self-consistent
condition for the determination ofe is that the energy of a
coated sphere (b) is equal to the energy of a sphere with radius
Rc and dielectric constante (c).
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easily satisfied with a few numbers of iterations (of t
order of 10) for all frequencies and filling ratios. Th
was not the case for all the previous CPAs. There
solution of the corresponding self-consistent equation
disappear or jump abruptly or even get multiple solutio
This new scheme can easily follow the unique solution
the self-consistent equation. We feel that the integrat
over all angles in Eq. (3) is responsible for the we
behaved solution. It should be noted thatCsrd, $Esrd, and
$Hsrd, being scattering wave functions, implicitly depen
on e. When Eq. (3) is satisfied, we have that the ene
transport velocity

yE ­
c

p
e

q
1 2 ReSyk2

e , (5)

where the self-energyS ­ 4pnfs0d is calculated with the
embedding medium characterized bye and fs0d is the
forward scattering amplitude. Equations (3), (4), and (
together define a mean-field approach to the calculatio
the transport velocity.

We have systematically calculated the energy cont
of the sphere and coated sphere for the scalar and ve
[15] cases. It is very remarkable that the energy stored
a dielectric sphere or coated sphere for both the scalar
vector cases are given by these relatively simple form
which are very convenient for numerical calculations.
Fig. 2, we present the result obtained for the frequen
dependence of energy transport velocity for scalar wa
and for three different filling ratios. We presented t
frequency asdyli, where d is the diameter of the
dielectric sphere andli ­ 2pcyv

p
e1 is the wavelength

inside the sphere. Notice that theyE exhibits pronounced
dips as a function of frequency only at low scatter
concentrations, in agreement with the results of
Amsterdam group [2,7,8] and experiments [9]. At arou
f ­ 0.10 the Boltzmann theory of the Amsterdam grou
starts to deviate from our results. At higher scatte
concentrations, the variation with frequency is reduc
as physically expected. Remember that the low den
approximation of the Amsterdam group gives negat
values ofyE for f ­ 0.60. For the scalar case, we als
calculated analytically the long-wavelength limit ofe, and
indeed we find thate ­ fe1 1 s1 2 f de2, as expected.
In Eq. (3), if one replaces the energy densityrs2d

E
srd of

the effective medium byrs1d
E

srd, one obtains the self-
consistent equation [13,14]Z Rc

0
d3rr

s1d
E srd fesrd 2 eg ­ 0

This equation is exactly equal to Eq. (1), provided that t
background dielectric constant ise and not unity.

This new energy-density CPA scheme can be ea
applied to the vector case. The energy density
the vector case is given in Eq. (4b), and contains
contribution from both the electric and magnetic field
Up to now all the low density limit theories, as we
as the CPA, were developed by just transferring all
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FIG. 2. The energy transport velocityyE for thescalarwaves
calculated by the energy-density CPA vsdyli for alumina
spheres with dielectric constant 9.0 for different values of filling
ratios.

scalar wave formalism to the vector case, without taking
the vector character of the wave function into account.
The vector character was used only in calculating the
t matrix or the forward-scattering amplitude for the
dielectric scatterer. In Fig. 3, we present the results for
the frequency dependence ofyE for the vector case,
for three values off. Notice that for f ­ 0.15, yE

has pronounced dips close to the Mie resonances, but
these dips become weaker or disappear altogether asf
increases. These results capture the correct physics, by
exhibiting dips near resonant frequencies for lowf and
no structure for highf, in agreement with experiment.
We have also analytically calculated the long-wavelength

FIG. 3. The energy transport velocityyE for vector waves
calculated by the energy-density CPA vsdyli for alumina
spheres with dielectric constant 9.0 for different values of filling
ratios.
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limit results fore and found that

e ­ e2

µ
1 1

3fa

1 2 fa

∂
wherea ­

e1 2 e2

e1 1 2e2
, (6)

which is the Maxwell-Garnett theory result. Finally, w
want to mention that within the energy-density CPA, w
can also calculate [13] the scattering mean path,s from
the following expression:

,s ­
1

p
2 ImS

"≥
k2

e 2 ReS

¥
1

r≥
k2

e 2 ReS

¥2
1

≥
ImS

¥2
#1y2

. (7)

Preliminary results for,s agree with the weak scatterin
results for lowf and low frequency. At higherf, there is
structure in the frequency dependence of,s, near the Mie
resonances, which becomes weaker asf increases.
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1
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v2

c2
e1

X̀
l­1

1

k3
1

Z k1Ri

0
r2dr

3 sjclj
2 1 jdl j

2dW syd
l s jl , jld ,

Ec ­
1
2

v2

c2
e2

X̀
l­1

1

k3
2

Z k2Rc

k2Ri

r2dr

3 fsjclj
2f2

l 1 jdl j
2g2

l d

3 W
syd
l s jl , jld

1 sjclj
2z 2

l 1 jdl j
2h2

l d

3 W
syd
l snl , nl d

1 2sjcl j
2flzl 1 jdl j

2glhld

3 W
syd
l s jl , nldg ,

W
syd
l szl , zld ­ s2l 1 1dzlsrdzlsrd

1 sl 1 1dzl21srdzl21srd

1 lzl11 srdzl11srd ,

fl ­ clsk1Rdx 0
l sk2Rd 2 sk2yk1dc 0

l sk1Rdxlsk2Rd ,

zl ­ clsk2Rdc 0
l sk1Rd 2 sk2yk1dc 0

l sk2Rdclsk1Rd ,

gl ­ sk2yk1dxlsk2Rdc 0
lsk1Rd 2 x 0

l sk2Rdclsk1Rd ,

hl ­ sk2yk1dclsk2Rdc 0
lsk1Rd 2 c 0

l sk2Rdclsk1Rd ,

where ki ­ e
1y2
i vyc and i ­ 1, 2. c and x denote

the Ricatti-Bessel functions of first and second kind,
respectively. Thecl and dl are the scattering coefficients
for the field inside the core. Similar expressions have been
obtained for the scalar case.
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